This is a type of scale which denotes the use of a scale placed between 11 and 14 ED2's, employing a ratio generator between 41/32 ~ 9/7 (being 25-ED2 the middle size of the Ketradektriatoh spectrum, in the 2;1 relation), resulting in a variant of tetradecatonic scale comforms by this scheme: LLLsLLLLsLLLLs.
The next table below shows an extension of ED2s which supports the Ketradektriatoh scale, with respect to the principal generator and their results for each L/s sizes:
The Ketradektriatoh Scale
This is a type of scale which denotes the use of a scale placed between 11 and 14 ED2's, employing a ratio generator between 41/32 ~ 9/7 (being 25-ED2 the middle size of the Ketradektriatoh spectrum, in the 2;1 relation), resulting in a variant of tetradecatonic scale comforms by this scheme: LLLsLLLLsLLLLs.
ED2s that contains this scale:
2 2 2 1 2 2 2 2 1 2 2 2 2 1: 25 (Middle range)
3 3 3 1 3 3 3 3 1 3 3 3 3 1: 36 (Lufsur range)
3 3 3 2 3 3 3 3 2 3 3 3 3 2: 39 (Fuslur range)
4 4 4 1 4 4 4 4 1 4 4 4 4 1: 47
4 4 4 2 4 4 4 4 2 4 4 4 4 2: 50
4 4 4 3 4 4 4 4 3 4 4 4 4 3: 53
5 5 5 1 5 5 5 5 1 5 5 5 5 1: 58
5 5 5 2 5 5 5 5 2 5 5 5 5 2: 61 Split-φ
5 5 5 3 5 5 5 5 3 5 5 5 5 3: 64 φ
5 5 5 4 5 5 5 5 4 5 5 5 5 4: 67
6 6 6 1 6 6 6 6 1 6 6 6 6 1: 69
6 6 6 5 6 6 6 6 5 6 6 6 6 5: 81
7 7 7 1 7 7 7 7 1 7 7 7 7 1: 80
7 7 7 2 7 7 7 7 2 7 7 7 7 2: 83
7 7 7 3 7 7 7 7 3 7 7 7 7 3: 86
7 7 7 4 7 7 7 7 4 7 7 7 7 4: 89
7 7 7 5 7 7 7 7 5 7 7 7 7 5: 92
7 7 7 6 7 7 7 7 6 7 7 7 7 6: 95
8 8 8 1 8 8 8 8 1 8 8 8 8 1: 91
8 8 8 3 8 8 8 8 3 8 8 8 8 3: 97 Split-φ
8 8 8 5 8 8 8 8 5 8 8 8 8 5: 103 φ
8 8 8 7 8 8 8 8 7 8 8 8 8 7: 109
9 9 9 1 9 9 9 9 1 9 9 9 9 1: 102
9 9 9 2 9 9 9 9 2 9 9 9 9 2: 105
9 9 9 4 9 9 9 9 4 9 9 9 9 4: 111
9 9 9 5 9 9 9 9 5 9 9 9 9 5: 114
9 9 9 7 9 9 9 9 7 9 9 9 9 7: 120
9 9 9 8 9 9 9 9 8 9 9 9 9 8: 123
10 10 10 1 10 10 10 10 1 10 10 10 10 1:113
10 10 10 3 10 10 10 10 3 10 10 10 10 3: 119
10 10 10 7 10 10 10 10 7 10 10 10 10 7: 131
10 10 10 9 10 10 10 10 9 10 10 10 10 9: 137
11 11 11 1 11 11 11 11 1 11 11 11 11 1: 124
11 11 11 2 11 11 11 11 2 11 11 11 11 2: 127
11 11 11 3 11 11 11 11 3 11 11 11 11 3: 130
11 11 11 4 11 11 11 11 4 11 11 11 11 4: 133
11 11 11 5 11 11 11 11 5 11 11 11 11 5: 136
11 11 11 6 11 11 11 11 6 11 11 11 11 6: 139
11 11 11 7 11 11 11 11 7 11 11 11 11 7: 142
11 11 11 8 11 11 11 11 8 11 11 11 11 8: 145
11 11 11 9 11 11 11 11 9 11 11 11 11 9 :148
11 11 11 10 11 11 11 11 10 11 11 11 11 10: 151
12 12 12 1 12 12 12 12 1 12 12 12 12 1: 135
12 12 12 5 12 12 12 12 5 12 12 12 12 5: 147
12 12 12 7 12 12 12 12 7 12 12 12 12 7: 153
12 12 12 11 12 12 12 12 11 12 12 12 12 11: 165
13 13 13 1 13 13 13 13 1 13 13 13 13 1: 146
13 13 13 2 13 13 13 13 2 13 13 13 13 2: 149
13 13 13 3 13 13 13 13 3 13 13 13 13 3: 152
13 13 13 4 13 13 13 13 4 13 13 13 13 4: 155
13 13 13 5 13 13 13 13 5 13 13 13 13 5: 158 Split-φ
13 13 13 6 13 13 13 13 6 13 13 13 13 6: 161
13 13 13 7 13 13 13 13 7 13 13 13 13 7: 164
13 13 13 8 13 13 13 13 8 13 13 13 13 8: 167 φ
13 13 13 9 13 13 13 13 9 13 13 13 13 9: 170
13 13 13 10 13 13 13 13 10 13 13 13 13 10: 173
13 13 13 11 13 13 13 13 11 13 13 13 13 11: 176
13 13 13 12 13 13 13 13 12 13 13 13 13 12: 179
14 14 14 1 14 14 14 14 1 14 14 14 14 1: 157
14 14 14 3 14 14 14 14 3 14 14 14 14 3: 163
14 14 14 5 14 14 14 14 5 14 14 14 14 5: 169
14 14 14 9 14 14 14 14 9 14 14 14 14 9: 181
14 14 14 11 14 14 14 14 11 14 14 14 14 11: 187
14 14 14 13 14 14 14 14 13 14 14 14 14 13: 193
15 15 15 1 15 15 15 15 1 15 15 15 15 1: 168
15 15 15 2 15 15 15 15 2 15 15 15 15 2: 171
15 15 15 4 15 15 15 15 4 15 15 15 15 4: 177
15 15 15 7 15 15 15 15 7 15 15 15 15 7: 186
15 15 15 8 15 15 15 15 8 15 15 15 15 8: 189
15 15 15 11 15 15 15 15 11 15 15 15 15 11: 198
15 15 15 13 15 15 15 15 13 15 15 15 15 13: 204
15 15 15 14 15 15 15 15 14 15 15 15 15 14: 207
16 16 16 1 16 16 16 16 1 16 16 16 16 1: 179
16 16 16 3 16 16 16 16 3 16 16 16 16 3: 185
16 16 16 5 16 16 16 16 5 16 16 16 16 5: 191
16 16 16 7 16 16 16 16 7 16 16 16 16 7: 197
16 16 16 9 16 16 16 16 9 16 16 16 16 9: 203
16 16 16 11 16 16 16 16 11 16 16 16 16 11: 209
16 16 16 13 16 16 16 16 13 16 16 16 16 13: 215
16 16 16 15 16 16 16 16 15 16 16 16 16 15: 221
17 17 17 1 17 17 17 17 1 17 17 17 17 1: 190
17 17 17 2 17 17 17 17 2 17 17 17 17 2: 193
17 17 17 3 17 17 17 17 3 17 17 17 17 3: 196
17 17 17 4 17 17 17 17 4 17 17 17 17 4: 199
17 17 17 5 17 17 17 17 5 17 17 17 17 5: 202 (Top limit for Lufsur range)
17 17 17 6 17 17 17 17 6 17 17 17 17 6: 205
17 17 17 7 17 17 17 17 7 17 17 17 17 7: 208
17 17 17 8 17 17 17 17 8 17 17 17 17 8: 211
17 17 17 9 17 17 17 17 9 17 17 17 17 9: 214
17 17 17 10 17 17 17 17 10 17 17 17 17 10: 217
17 17 17 11 17 17 17 17 11 17 17 17 17 11: 220
17 17 17 12 17 17 17 17 12 17 17 17 17 12: 223 (Top limit for Fuslur range)
17 17 17 13 17 17 17 17 13 17 17 17 17 13: 226
17 17 17 14 17 17 17 17 14 17 17 17 17 14: 229
17 17 17 15 17 17 17 17 15 17 17 17 17 15: 232
17 17 17 16 17 17 17 17 16 17 17 17 17 16: 235
The next table below shows an extension of ED2s which supports the Ketradektriatoh scale, with respect to the principal generator and their results for each L/s sizes:
generators smaller than this are proper